来自马文平的问题
如图,△ABC中,AC=6,BC=8,∠C=90°,以点C为圆心,CA为半径的圆与AB交于点D,求AD的长.
如图,△ABC中,AC=6,BC=8,∠C=90°,以点C为圆心,CA为半径的圆与AB交于点D,求AD的长.
1回答
2020-03-10 17:27
如图,△ABC中,AC=6,BC=8,∠C=90°,以点C为圆心,CA为半径的圆与AB交于点D,求AD的长.
如图,△ABC中,AC=6,BC=8,∠C=90°,以点C为圆心,CA为半径的圆与AB交于点D,求AD的长.
过C作CE⊥AB于E,
∵CE⊥AB,CE过圆心C,
∴AD=2AE,
由勾股定理得:AB=
AC