来自田鹤立的问题
【高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=答案是2/3,我觉得题目有问题啊】
高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=
答案是2/3,我觉得题目有问题啊
1回答
2020-03-10 23:21
【高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=答案是2/3,我觉得题目有问题啊】
高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=
答案是2/3,我觉得题目有问题啊
答案不错,是2/3
主要运用奇函数在对称区间上积分为0
令F(x)=x·[f(x)+f(-x)],x∈(-1,1),则
F(-x)=(-x)·[f(-x)+f(x)]=-F(x)
∴F(x)是(-1,1)上的奇函数
∴∫(1,1)x·[f(x)+f(-x)+x]dx=∫(-1,1)[F(x)+x²]dx
=0+∫(-1.1)x²dx
=2∫(0,1)x²dx
=2·[x³/3]|(0,1)
=2/3