来自李成林的问题
【高数零点定理设函数f(x)d对于闭区间[a,b]上任意两点x、y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正常数,且f(a)·f(b)<0证明:至少有一点ξΕ(a,b),使得f(ξ)=0】
高数零点定理
设函数f(x)d对于闭区间[a,b]上任意两点x、y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正常数,且f(a)·f(b)<0证明:至少有一点ξΕ(a,b),使得f(ξ)=0
1回答
2020-03-13 04:30