来自方涌奎的问题
关于高等数学的一道证明题目已知f(x)在[0,1]上连续非负,而且f(0)=f(1)=0;求证:对于任意的a属于(0,1),总存在t属于[0,1),使f(t)=f(t+a).设:u(x)=f(x)-f(x+a).在[0,1-a]上连续.请问这个在[0,1-a]上连续是怎么得
关于高等数学的一道证明题目
已知f(x)在[0,1]上连续非负,而且f(0)=f(1)=0;求证:对于任意的a属于(0,1),总存在t属于[0,1),使f(t)=f(t+a).
设:u(x)=f(x)-f(x+a).在[0,1-a]上连续.
请问这个在[0,1-a]上连续是怎么得到的呢?
1回答
2020-03-13 15:47