已知函数f(x)=ln(2ax+1)+-x2-2ax(a∈R).(1)若x=2为f(x)的极值点,求实数a的值;(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;(3)当a=-时,方程f(1-x)=有
已知函数f(x)=ln(2ax+1)+-x2-2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=-时,方程f(1-x)=有实根,求实数b的最大值.
已知函数f(x)=ln(2ax+1)+-x2-2ax(a∈R).(1)若x=2为f(x)的极值点,求实数a的值;(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;(3)当a=-时,方程f(1-x)=有
已知函数f(x)=ln(2ax+1)+-x2-2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=-时,方程f(1-x)=有实根,求实数b的最大值.
分析:
(1)先对函数求导,由x=2为f(x)的极值点,可得f'(2)=0,代入可求a(2)由题意可得在区间[3,+∞)上恒成立,①当a=0时,容易检验是否符合题意,②当a≠0时,由题意可得必须有2ax+1>0对x≥3恒成立,则a>0,从而2ax2+(1-4a)x-(4a2+2)≥0对x∈[3,+∞0上恒成立.考查函数g(x)=2ax2+(1-4a)x-(4a2+2),结合二次函数的性质可求(3)由题意可得.问题转化为b=xlnx-x(1-x)2+x(1-x)=xlnx+x2-x3在(0,+∞)上有解,即求函数g(x)=xlnx+x2-x3的值域.方法1:构造函数g(x)=x(lnx+x-x2),令h(x)=lnx+x-x2(x>0),对函数h(x)求导,利用导数判断函数h(x)的单调性,进而可求方法2:对函数g(x)=x(lnx+x-x2)求导可得g'(x)=lnx+1+2x-3x2.由导数知识研究函数p(x)=lnx+1+2x-3x2,的单调性可求函数g(x)的零点,即g'(x)=0,从而可得函数g(x)的单调性,结合,可知x→0时,lnx+<0,则g(x)<0,又g(1)=0可求b的最大值
(1)=.…(1分)因为x=2为f(x)的极值点,所以f'(2)=0.…(2分)即,解得a=0.…(3分)又当a=0时,f'(x)=x(x-2),从而x=2为f(x)的极值点成立.…(4分)(2)因为f(x)在区间[3,+∞)上为增函数,所以在区间[3,+∞)上恒成立.…(5分)①当a=0时,f'(x)=x(x-2)≥0在[3,+∞)上恒成立,所以fx)在[3,+∞上为增函数,故a=0符合题意.…(6分)②当a≠0时,由函数f(x)的定义域可知,必须有2ax+1>0对x≥3恒成立,故只能a>0,所以2ax2+(1-4a)x-(4a2+2)≥0对x∈[3,+∞0上恒成立.…(7分)令g(x)=2ax2+(1-4a)x-(4a2+2),其对称轴为,…(8分)因为a>0所以,从而g(x)≥0在[3,+∞)上恒成立,只要g(3)≥0即可,因为g(3)=-4a2+6a+1≥0,解得.…(9分)因为a>0,所以.综上所述,a的取值范围为.…(10分)(3)若时,方程x>0可化为,.问题转化为b=xlnx-x(1-x)2+x(1-x)=xlnx+x2-x3在(0,+∞)上有解,即求函数g(x)=xlnx+x2-x3的值域.…(11分)以下给出两种求函数g(x)值域的方法:方法1:因为g(x)=x(lnx+x-x2),令h(x)=lnx+x-x2(x>0),则,…(12分)所以当0<x<1,h′(x)>0,从而h(x)在(0,1)上为增函数,当x>1,h′(x)<0,从而h(x')在(1,+∞上为减函数,…(13分)因此h(x)≤h(1)=0.而,故b=x?h(x)≤0,因此当x=1时,b取得最大值0.…(14分)方法2:因为g(x)=x(lnx+x-x2),所以g'(x)=lnx+1+2x-3x2.设p(x)=lnx+1+2x-3x2,则.当时,p'(x)>0,所以p(x)在上单调递增;当时,p'(x)<0,所以p(x)在上单调递减;因为p(1)=0,故必有,又,因此必存在实数使得g'(x)=0,∴当0<x<x时,g′(x)<0,所以g(x)在(0,x)上单调递减;当x<x<1,g′(x)>0,所以,g(x)在(1,+∞)上单调递减;又因为,当x→0时,lnx+<0,则g(x)<0,又g(1)=0.因此当x=1时,b取得最大值0.…(14分)
点评:
本题主要考查了利用函数的导数求解函数极值的应用,及利用函数的导数研究函数的单调性及函数的最值的求解,解答本题要求考生具备较强的逻辑推理与运算的能力