来自李良超的问题
已知函数,.(1)当时,求的单调区间;(2)已知点和函数图象上动点,对任意,直线倾斜角都是钝角,求的取值范围.
已知函数,.
(1)当时,求的单调区间;
(2)已知点和函数图象上动点,对任意,直线倾斜角都是钝角,求的取值范围.
1回答
2020-03-19 17:53
已知函数,.(1)当时,求的单调区间;(2)已知点和函数图象上动点,对任意,直线倾斜角都是钝角,求的取值范围.
已知函数,.
(1)当时,求的单调区间;
(2)已知点和函数图象上动点,对任意,直线倾斜角都是钝角,求的取值范围.
已知函数,.
(1)当时,求的单调区间;
(2)已知点和函数图象上动点,对任意,直线倾斜角都是钝角,求的取值范围.
(1)单调递增区间为,单调递减区间为;(2)
试题分析:(1)先求导,再令导数等于0,解导数大于0得函数的增区间,解导数小于0得函数的减区间。(2)可将问题转化为在上恒成立问题,即在上。先求导,因为,故可只讨论分子的正负问题,不妨令,讨论在区间上的正负问题,同时注意对的讨论。根据导数正得增区间导数负得减区间,再根据函数的单调性求函数的最值。
⑴当时,,定义域为,
所以当时,的单调递增区间为,单调递减区间为.
⑵因为对任意,直线的倾斜角都是钝角,
所以对任意,直线的斜率小于0,即,,
即在区间上的最大值小于1,
,.
令
①当时,在上单调递减, ,显然成立,所以.
②当时,二次函数的图象开口向下,
且,,
,