来自李景霞的问题
已知实数a满足a≤-1,函数f(x)=ex(x2+ax+1).(1)当a=-3时,求f(x)的极小值;(2)若g(x)=2x3+3(b+1)x2+6bx+6(b∈R)的极小值点与f(x)的极小值点相同,证明:g(x)的极大值大于等于
已知实数a满足a≤-1,函数f(x)=ex(x2+ax+1).
(1)当a=-3时,求f(x)的极小值;
(2)若g(x)=2x3+3(b+1)x2+6bx+6(b∈R)的极小值点与f(x)的极小值点相同,证明:g(x)的极大值大于等于7.
1回答
2020-03-19 06:06