来自安杨的问题
如图,在△ABC中,BE⊥AC,AD⊥BC,AD,BE相交于点P,AE=BD,求证:点P在∠ACB的角平分线上.
如图,在△ABC中,BE⊥AC,AD⊥BC,AD,BE相交于点P,AE=BD,求证:点P在∠ACB的角平分线上.
1回答
2020-03-20 13:08
如图,在△ABC中,BE⊥AC,AD⊥BC,AD,BE相交于点P,AE=BD,求证:点P在∠ACB的角平分线上.
如图,在△ABC中,BE⊥AC,AD⊥BC,AD,BE相交于点P,AE=BD,求证:点P在∠ACB的角平分线上.
证明:连结PC.∵BE⊥AC,AD⊥BC,∴∠AEB=∠BDA=90°.在Rt△ADB和Rt△BEA中AB=ABBD=AE,∴∠BAD=∠ABE,∠ABD=∠BAE,∴AP=BP,AC=BC.在△APC和△BPC中AP=BPAC=BCPC=PC∴△APC≌△BPC(SSS),∴∠ACP=∠BCP...