来自南金瑞的问题
等边△ABC中,BO、CO分别平分∠ABC和∠ACB,BO、CO垂直平分线分别交BC于E、F.请问线段BE、FC是否相等?为什么?
等边△ABC中,BO、CO分别平分∠ABC和∠ACB,BO、CO垂直平分线分别交BC于E、F.请问线段BE、FC是否相等?为什么?
1回答
2020-03-21 00:17
等边△ABC中,BO、CO分别平分∠ABC和∠ACB,BO、CO垂直平分线分别交BC于E、F.请问线段BE、FC是否相等?为什么?
等边△ABC中,BO、CO分别平分∠ABC和∠ACB,BO、CO垂直平分线分别交BC于E、F.请问线段BE、FC是否相等?为什么?
BE=CF,
理由是:连接OE,OF,
∵DE垂直平分OB
∴BE=OE(线段垂直平分线上的点到线段两端点距离相等),
同理OF=CF,
∴∠EBO=∠BOE,∠FCO=∠FOC,
∵等边三角形ABC中,
∴∠ABC=∠ACB=60°(等边三角形各角相等且为60°)
∵BO平分∠ABC,CO平分∠ACB
∴∠EBO=12