来自施韦的问题
求和1/1×2+1/2×3+.+1/n(n+1)用裂项相消法如题,
求和1/1×2+1/2×3+.+1/n(n+1)用裂项相消法
如题,
3回答
2020-03-22 13:10
求和1/1×2+1/2×3+.+1/n(n+1)用裂项相消法如题,
求和1/1×2+1/2×3+.+1/n(n+1)用裂项相消法
如题,
1/(1×2)+1/(2×3)+...+1/[n(n+1)]
=1-1/2+1/2-1/3+...+1/n-1(n+1)
=1-1/(n+1)
=n/(n+1)
那1/1×31/2×4....1/n(n2)呢?方法一样
方法是一样的。1/(1×3)+1/(2×4)+...+1/[n(n+2)]=(1/2)[1-1/3+1/2-1/4+...+1/n-1/(n+2)]=(1/2)[1+1/2-1/(n+1)-1/(n+2)]=3/4-1/[2(n+1)]-1/[2(n+2)]