来自蔡淑琴的问题
【若函数f(x)=x+13−2tx(t∈N*)的最大值是正整数M,则M=______.】
若函数f(x)=x+
13−2tx(t∈N*)的最大值是正整数M,则M=______.
1回答
2020-03-22 08:53
【若函数f(x)=x+13−2tx(t∈N*)的最大值是正整数M,则M=______.】
若函数f(x)=x+
13−2tx(t∈N*)的最大值是正整数M,则M=______.
∵13-2tx≥0∴x≤132tf'(x)=1-2t213−2txf'(x)=0时,f(x)才有最大值f'(x)=1-2t213−2tx=013−2tx=tx=13−t22t,f(x)最大值=13−t22t +t=M∵M=13−t22t+t=t+13t2当t=1或13时M取整数,∴M=1+1312=7故答...