来自林金的问题
已知函数f(x)=ex-ax,a∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当x∈[0,+∞)时,都有f(x)≥0成立,求实数a的取值范围.
已知函数f(x)=ex-ax,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,都有f(x)≥0成立,求实数a的取值范围.
1回答
2020-03-22 22:42
已知函数f(x)=ex-ax,a∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当x∈[0,+∞)时,都有f(x)≥0成立,求实数a的取值范围.
已知函数f(x)=ex-ax,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,都有f(x)≥0成立,求实数a的取值范围.
(Ⅰ)f(x)的定义域是(-∞,+∞),f′(x)=ex-a.…2分
(1)当a≤0时,f'(x)>0成立,f(x)的单调增区间为(-∞,+∞); …3分
(2)当a>0时,
令f'(x)>0,得x>lna,则f(x)的单调增区间是(lna,+∞).…4分
令f'(x)<0,得x<lna,则f(x)的单调减区间是(-∞,lna).…5分
综上所述,当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间是(lna,+∞),单调减区间是(-∞,lna)…6分
(Ⅱ)当x=0时,f(x)=1≥0成立,a∈R.…7分
当x∈(0,+∞)时,f(x)=ex-ax≥0成立,即x>0时,a≤e