来自冉茂柱的问题
(2012•西城区二模)在平面直角坐标系xOy中,抛物线y1=2x2+14的顶点为M,直线y2=x,点P(n,0)为x轴上的一个动点,过点P作x轴的垂线分别交抛物线y1=2x2+14和直线y2=x于点A,点B.(1)直接写出
(2012•西城区二模)在平面直角坐标系xOy中,抛物线y1=2x2+14的顶点为M,直线y2=x,点P(n,0)为x轴上的一个动点,过点P作x轴的垂线分别交抛物线y1=2x2+14和直线y2=x于点A,点B.
(1)直接写出A,B两点的坐标(用含n的代数式表示);
(2)设线段AB的长为d,求d关于n的函数关系式及d的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系;
(3)已知二次函数y=ax2+bx+c(a,b,c为整数且a≠0),对一切实数x恒有x≤y≤2x2+14,求a,b,c的值.
1回答
2020-03-24 17:37