来自姜珊的问题
抛物线Y=ax(平方)+bx+c与x轴的公共点是(-1,0)(3,0)求这条抛物线的对称轴.
抛物线Y=ax(平方)+bx+c与x轴的公共点是(-1,0)(3,0)求这条抛物线的对称轴.
1回答
2020-03-28 21:55
抛物线Y=ax(平方)+bx+c与x轴的公共点是(-1,0)(3,0)求这条抛物线的对称轴.
抛物线Y=ax(平方)+bx+c与x轴的公共点是(-1,0)(3,0)求这条抛物线的对称轴.
1、对称轴一定是两个零点的中点坐标值
x=(-1+3)/2=1
2、需要过程可以有另一种解法
因为y=ax^2+bx+c与x轴的公共点是(-1,0)(3,0)
所以原函数可以写成
y=(x+1)(x-3)
=x^2-2x-3
=(x-1)^2-4
所以对称轴为x=1