来自贺素良的问题
直线ax+by=1与圆x^2+y^2=1相交则点p(a,b)在A圆上B圆外C圆内D以上都有可能
直线ax+by=1与圆x^2+y^2=1相交则点p(a,b)在
A圆上B圆外C圆内D以上都有可能
1回答
2020-04-05 16:49
直线ax+by=1与圆x^2+y^2=1相交则点p(a,b)在A圆上B圆外C圆内D以上都有可能
直线ax+by=1与圆x^2+y^2=1相交则点p(a,b)在
A圆上B圆外C圆内D以上都有可能
相交则圆心到直线距离小于半径
所以|0+0-1|/根号(a^2+b^2)0
两边乘根号(a^2+b^2)
根号(a^2+b^2)>1
根号(a^2+b^2)就是P到圆心的距离,大于1,即大于半径
所以P在园外
选B