求高中数学立体几何的一些概念概念公式恩我后天就考了玩心太重1-查字典问答网
分类选择

来自谭小川的问题

  求高中数学立体几何的一些概念概念公式恩我后天就考了玩心太重1天复习这些应该够了吧别的没什么了.我不做笔记的.

  求高中数学立体几何的一些概念

  概念公式恩我后天就考了

  玩心太重1天复习这些应该够了吧别的没什么了.我不做笔记的.

1回答
2020-04-07 20:44
我要回答
请先登录
卢剑

  公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.

  (1)判定直线在平面内的依据

  (2)判定点在平面内的方法

  公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线.

  (1)判定两个平面相交的依据

  (2)判定若干个点在两个相交平面的交线上

  公理3:经过不在一条直线上的三点,有且只有一个平面.(1)确定一个平面的依据

  (2)判定若干个点共面的依据

  推论1:经过一条直线和这条直线外一点,有且仅有一个平面.(1)判定若干条直线共面的依据

  (2)判断若干个平面重合的依据

  (3)判断几何图形是平面图形的依据

  推论2:经过两条相交直线,有且仅有一个平面.

  推论3:经过两条平行线,有且仅有一个平面.

  立体几何直线与平面

  空间二直线平行直线

  公理4:平行于同一直线的两条直线互相平行

  等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等.

  异面直线

  空间直线和平面位置关系

  (1)直线在平面内——有无数个公共点

  (2)直线和平面相交——有且只有一个公共点

  (3)直线和平面平行——没有公共点

  立体几何直线与平面

  直线与平面所成的角

  (1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角

  (2)一条直线垂直于平面,定义这直线与平面所成的角是直角

  (3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角

  三垂线定理在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直

  三垂线逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直

  空间两个平面两个平面平行判定

  性质

  (1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行

  (2)垂直于同一直线的两个平面平行

  (1)两个平面平行,其中一个平面内的直线必平行于另一个平面

  (2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行

  (3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面

  相交的两平面二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面

  二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角

  平面角是直角的二面角叫做直二面角

  两平面垂直判定

  性质

  如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

  (1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面

  (2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内

  立体几何多面体、棱柱、棱锥

  多面体

  定义由若干个多边形所围成的几何体叫做多面体.

  棱柱斜棱柱:侧棱不垂直于底面的棱柱.

  直棱柱:侧棱与底面垂直的棱柱.

  正棱柱:底面是正多边形的直棱柱.

  棱锥正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥.

  球

  到一定点距离等于定长或小于定长的点的集合.

  欧拉定理

  简单多面体的顶点数V,棱数E及面数F间有关系:V+F-E=2

2020-04-07 20:48:08

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •