【为什么要证明1+1?谁证明了这个命题?】-查字典问答网
分类选择

来自董慧的问题

  【为什么要证明1+1?谁证明了这个命题?】

  为什么要证明1+1?谁证明了这个命题?

1回答
2020-04-09 22:44
我要回答
请先登录
董梅

  这是一个很著名的数学命题

  哥德巴赫猜想

  大致可以分为两个猜想:

  ■1.每个不小于6的偶数都是两个奇素数之和;

  ■2.每个不小于9的奇数都是三个奇素数之和.

  ■哥德巴赫相关

  哥德巴赫(GoldbachC.,1690.3.18~1764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师.1725年,到了俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年,移居莫斯科,并在俄国外交部任职.

  【哥德巴赫猜想的来源】

  [编辑本段]

  1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来.

  在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题.他写道:

  "我的问题是这样的:

  随便取某一个奇数,比如77,可以把它写成三个素数之和:

  77=53+17+7;

  再任取一个奇数,比如461,

  461=449+7+5,

  也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和.这样,我发现:任何大于7的奇数都是三个素数之和.

  但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验."

  欧拉回信说,这个命题看来是正确的,但是他也给不出严格的证明.同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明.

  不难看出,哥德巴赫的命题是欧拉命题的推论.事实上,任何一个大于5的奇数都可以写成如下形式:

  2N+1=3+2(N-1),其中2(N-1)≥4.

  若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立.

  但是哥德巴赫的命题成立并不能保证欧拉命题的成立.因而欧拉的命题比哥德巴赫的命题要求更高.

  现在通常把这两个命题统称为哥德巴赫猜想

  【哥德巴赫猜想的小史】

  [编辑本段]

  1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被1和它本身整除的数)之和.如6=3+3,12=5+7等等.公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明.叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意.从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,……等等.有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立.但严格的数学证明尚待数学家的努力.

  从此,这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠".人们对哥德巴赫猜想难题的热情,历经两百多年而不衰.世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解.

  到了20世纪20年代,才有人开始向它靠近.1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大偶数n(不小于6)的偶数都可以表示为九个质数的积加上九个质数的积,简称9+9.这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想.

  目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.”通常都简称这个结果为大偶数可表示为“1+2”的形式.

  ■哥德巴赫猜想证明进度相关

  在陈景润之前,关于偶数可表示为s个质数的乘积与t个质数的乘积之和(简称“s+t”问题)之进展情况如下:

  1920年,挪威的布朗证明了“9+9”.

  1924年,德国的拉特马赫证明了“7+7”.

  1932年,英国的埃斯特曼证明了“6+6”.

  1937年,意大利的蕾西先后证明了“5+7”,“4+9”,“3+15”和“2+366”.

  1938年,苏联的布赫夕太勃证明了“5+5”.

  1940年,苏联的布赫夕太勃证明了“4+4”.

  1948年,匈牙利的瑞尼证明了“1+c”,其中c是一很大的自然数.

  1956年,中国的王元证明了“3+4”.

  1957年,中国的王元先后证明了“3+3”和“2+3”.

  1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1+5”,中国的王元证明了“1+4”.

  1965年,苏联的布赫夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1+3”.

  1966年,中国的陈景润证明了“1+2”.

  从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年.自"陈氏定理"诞生至今的40多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功.

  ■布朗筛法思路相关资料

  布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和:2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是质数,即得n=p1+p2,这样哥德巴赫猜想就被证明了.前一部分的叙述是很自然的想法.关键就是要证明'至少还有一对自然数未被筛去'.目前世界上谁都未能对这一部分加以证明.要能证明,这个猜想也就解决了.

  然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和.故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2

2020-04-09 22:48:18

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •