来自陆润华的问题
一道高一简单数学已知A,B,C为三角形ABC的三边,B=25,sinB=(sinA+sinC)/(cosA+cosC)=3a/4c,求此三角形的面积.
一道高一简单数学
已知A,B,C为三角形ABC的三边,B=25,sinB=(sinA+sinC)/(cosA+cosC)=3a/4c,求此三角形的面积.
1回答
2020-04-08 02:39
一道高一简单数学已知A,B,C为三角形ABC的三边,B=25,sinB=(sinA+sinC)/(cosA+cosC)=3a/4c,求此三角形的面积.
一道高一简单数学
已知A,B,C为三角形ABC的三边,B=25,sinB=(sinA+sinC)/(cosA+cosC)=3a/4c,求此三角形的面积.
面积为150
思路
由b=25.sinB=3a/4c.
猜想是一个边长为3:4:5的直角三角形.带入后是成立的
所以b=25,a=20,c=15.面积为0.5*20*15=150