【在三角形ABC中,角A,B,C所对边分别为a,b,c.已知-查字典问答网
分类选择

来自刘金武的问题

  【在三角形ABC中,角A,B,C所对边分别为a,b,c.已知a+b=5,c=7,且4*sin((A+B)/2)的平方-cos2C=7/2.求角C的大小.求三角形ABC的面积】

  在三角形ABC中,角A,B,C所对边分别为a,b,c.已知a+b=5,c=7,且4*sin((A+B)/2)的平方-cos2C=7/2.求角C的大小.求三角形ABC的面积

1回答
2020-04-10 07:18
我要回答
请先登录
罗宪

  c应该等于根号7吧,不然此题无解.

  若c=根号7,则解法如下:

  ∵4sin^2(A+B)/2)-cos2C=7/2

  4sin^2[(180°-C)/2]-cos2C=7/2

  4sin^2(90°-C/2)-cos2=7/2

  4cos^2(C/2)-cos2=7/2

  2(1+cosC)-(2cos^2C-1)=7/2

  2+2cosC-2cos^2C+1=7/2

  解得cosC=1/2∴角C=60°

  ∵a+b=5

  ∴(a+b)^2=a^2+b^2+2ab=25

  ∴a^2+b^2=25-2ab

  根据余弦定理c^2=a^2+b^2-2abcosC

  ∴7=25-2ab-2ab*1/2

  解得ab=6

  则ΔABC面积=1/2*sinc*ab=1/2*根号3/2*6=3倍根号3/2

2020-04-10 07:20:30

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •