【【【【高一数学集合证明】】】】对于集合N={1,2,3,……,n}及他的每一个非空子集,定义一个“交替和如下:按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数.例如
【【【【高一数学集合证明】】】】
对于集合N={1,2,3,……,n}及他的每一个非空子集,定义一个“交替和如下:按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数.例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和为5.当集合N中的n=2时,集合N={1,2}的所有非空子集为{1},{2},{1,2},则他的每一个非空子集的”交替和“的总和S2=1+2+(2-1)=4
试证明N={1,2,3,……,n}的每一个非空集合的交替和Sn=n*2^(n-1)
quick!