要做一个无盖的圆柱形容器,它的净容积为8兀,壁厚为常数a,当-查字典问答网
分类选择

来自宋文军的问题

  要做一个无盖的圆柱形容器,它的净容积为8兀,壁厚为常数a,当容器内壁半径为多少时,才能使所用的材料最省?

  要做一个无盖的圆柱形容器,它的净容积为8兀,壁厚为常数a,当容器内壁半径为多少时,才能使所用的材料最省?

1回答
2020-04-14 22:44
我要回答
请先登录
陈季香

  设内壁半径为X,所以内面积为兀(X^2),高就为8兀/(兀X^2)=

  8/(X^2),内壁表面积就为2兀X×8/(X^2)=16兀/X

  所以壁厚为16兀A/X,底壁厚A兀(X^2)

  因为要使材料最省,所以可以把最底边的一圈挖去

  所以得

  Y=16兀A/X+A兀(X^2)

  Y′=—16兀A/(X^2)+2AX兀

  Y′=0→—16兀A/(X^2)+2AX兀=0

  ∴16兀A/(X^2)=2AX兀

  ∴8/(X^2)=X

  ∴X^3=8

  ∴X=2

  ∴所以当内壁半径为2时,材料最省

  由于求导的表格太难弄了,相信你也应该知道为什么是Y′=0时把

2020-04-14 22:45:03

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •