来自廖志芳的问题
【设函数f(x)=ax+xlnx,g(x)=x3-x2-3.(I)如果存在x1、x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;(II)如果对于任意的s、t∈[12,2],都有f(s)≥g(t)成立,求】
设函数f(x)=ax+xlnx,g(x)=x3-x2-3.
(I)如果存在x1、x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(II)如果对于任意的s、t∈[12,2],都有f(s)≥g(t)成立,求实数a的取值范围..
1回答
2020-04-14 11:00