【设a、b、c均为正实数,求证:1/2a+1/2b+1/2c≥1/(b+c)+1/(c+a)+1/(a+b)若x>0,y>0,且x≠y,求证:1/x+1/y>4/(x+y)若x>0,y>0,z>0,且x,y,z不全相等,求证:1/x+1/y+1/z>9/(x+y+c)】
设a、b、c均为正实数,求证:1/2a+1/2b+1/2c≥1/(b+c)+1/(c+a)+1/(a+b)
若x>0,y>0,且x≠y,求证:1/x+1/y>4/(x+y)
若x>0,y>0,z>0,且x,y,z不全相等,求证:1/x+1/y+1/z>9/(x+y+c)