来自车武军的问题
希望能解答我的疑惑,其实很简单的.对于这个问题f(x)=a^2·lnx-x^2+ax(a>0)①求f(x)的单调区间②求所有实数a,使e-1≤f(x)≤e^2对x∈[1,e]恒成立.①∵f(x)=a²lnx-x²+ax,其中x>0∴f'(x)=(a
希望能解答我的疑惑,其实很简单的.
对于这个问题
f(x)=a^2·lnx-x^2+ax(a>0)①求f(x)的单调区间②求所有实数a,使e-1≤f(x)≤e^2对x∈[1,e]恒成立.
①
∵f(x)=a²lnx-x²+ax,其中x>0
∴f'(x)=(a²/x)-2x+a=-(x-a)(2x+a)/x
∵a>0
∴f(x)的单调增区间为(0,a),f(x)的单调减区间为(a,+∞)
②
由题意得:
f(1)=a-1≥e-1
即a≥e
由①知:f(x)在[1,e]内单调递增
要使e-1≤f(x)≤e²对x∈[1,e]恒成立
只要:
f(1)=a-1≥e-1
f(e)=a²-e²+ae≤e²
解得:a=e
在解析中为什么
由题意得:
f(1)=a-1≥e-1
这是怎样由题意得出来的呢?
希望能解答我的疑惑,
1回答
2020-04-14 22:44