来自纪恩庆的问题
【已知向量OP=(2+2cosα,2+2sinα),α属于全体实数(O是坐标原点),向量OQ满足OP+OQ=0,求动点Q的轨迹方程】
已知向量OP=(2+2cosα,2+2sinα),α属于全体实数(O是坐标原点),向量OQ满足OP+OQ=0,求动点Q的轨迹方程
1回答
2020-04-14 19:21
【已知向量OP=(2+2cosα,2+2sinα),α属于全体实数(O是坐标原点),向量OQ满足OP+OQ=0,求动点Q的轨迹方程】
已知向量OP=(2+2cosα,2+2sinα),α属于全体实数(O是坐标原点),向量OQ满足OP+OQ=0,求动点Q的轨迹方程
Q点x=-2-2cosay=-2-sina
联立(y+2)/(x+2)=sina/cosa=tana
最后得出轨迹方程
y=tana*x+2tana-2