来自孙君顶的问题
1/ln(n+1)+1/ln(n+2)……1/ln(n+2013)>2013/n(n+2013)
1/ln(n+1)+1/ln(n+2)……1/ln(n+2013)>2013/n(n+2013)
1回答
2020-04-14 19:34
1/ln(n+1)+1/ln(n+2)……1/ln(n+2013)>2013/n(n+2013)
1/ln(n+1)+1/ln(n+2)……1/ln(n+2013)>2013/n(n+2013)
∵0[1/n-1/(n+1)]+[1/(n+1)-1/(n+2)]+...+[1/(n+2012)-1/(n+2013)]
=1/n-1/(n+2013)
=2013/[n*(n+2013)]