来自姜彩萍的问题
已知实数a,b,c属于R,函数f(x)=ax^3+bx^2+cx满足f(1)=0,设f(x)的导函数为f’(x),满足f'(0)f'(1)>0,设a为常数,且a>0.已知函数f(x)的两个极值点为X1,X2,A(X1,f(X1)),B(X2,f(X2)),求证:直线AB的斜率K属
已知实数a,b,c属于R,函数f(x)=ax^3+bx^2+cx满足f(1)=0,设f(x)的导函数为f’(x),满足f'(0)f'(1)>0,设a为常数,且a>0.
已知函数f(x)的两个极值点为X1,X2,A(X1,f(X1)),B(X2,f(X2)),求证:直线AB的斜率K属于(-2a/9,-a/6].
1回答
2020-04-14 02:56