来自冯志伟的问题
已知abc∈R+,a+b+c=1,求使不等式根号下(3a+2)+根号下(3b+2)+根号下(3c+2)小于等于6证明
已知abc∈R+,a+b+c=1,求使不等式根号下(3a+2)+根号下(3b+2)+根号下(3c+2)小于等于6证明
1回答
2020-04-14 13:30
已知abc∈R+,a+b+c=1,求使不等式根号下(3a+2)+根号下(3b+2)+根号下(3c+2)小于等于6证明
已知abc∈R+,a+b+c=1,求使不等式根号下(3a+2)+根号下(3b+2)+根号下(3c+2)小于等于6证明
由于abc∈R+,a+b+c=1,由均值不等式的算术平均数小于平方平均数可知
[√(3a+2)+√(3b+2)+√(3c+2)]/3