来自李翠芸的问题
【关于椭圆的椭圆有如下性质:“若A、B、C是椭圆椭圆有如下性质:“若A、B、C是椭圆x^2/m^2+y^2/n^2=1上的三点,设直线AB、AC、BC的斜率分别是k1、k2、k3,过A点的椭圆切线的斜率是k4,那么k1+k2=0的充】
关于椭圆的椭圆有如下性质:“若A、B、C是椭圆
椭圆有如下性质:“若A、B、C是椭圆x^2/m^2+y^2/n^2=1上的三点,设直线AB、AC、BC的斜率分别是k1、k2、k3,过A点的椭圆切线的斜率是k4,那么k1+k2=0的充要条件是k3+k4=0”,利用这个性质解答:
已知椭圆x^2+12y^2=16上有三点P(-2,1)、Q(-4,0)、R(2,-1),证明直线PQ、PR的斜率和为0,并求过P点的椭圆切线方程.
1回答
2020-04-17 01:48