来自李良超的问题
在平面直角坐标系中xOy中,已知圆x在平面直角坐标系中xoy,已知圆x^2+y^2-12x+32=0圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A、B在平面直角坐标系中xoy,已知圆x^2+y^2-12x+32=0圆心为Q,
在平面直角坐标系中xOy中,已知圆x
在平面直角坐标系中xoy,已知圆x^2+y^2-12x+32=0圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A、B
在平面直角坐标系中xoy,已知圆x^2+y^2-12x+32=0圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A、B
1求K的取值范围
2是否存在常数k,使得向量OA+向量OB于向量PQ共线?如果存在,求k,如果不存在,说明理由
1回答
2020-04-16 18:08