不定积分(0,x)e^(-t²)dt展开成x的幂级-查字典问答网
分类选择

来自姜波的问题

  不定积分(0,x)e^(-t²)dt展开成x的幂级数速求,

  不定积分(0,x)e^(-t²)dt展开成x的幂级数速求,

1回答
2020-04-24 20:50
我要回答
请先登录
刘宏才

  已知 e^x=∑(n≥0)[(x^n)/n!],x∈R,于是, e^(-t²)=∑(n≥0){[(-t²)^n]/n!}=∑(n≥0){[(-1)^n][t^(2n)]/n!},t∈R,进而 ∫[0,x]e^(-t²)dt=∑(n≥0)∫[0,x]{...

2020-04-24 20:50:57

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •