来自邵虹的问题
已知函数f(x)=ax+lnx,其中a∈R.(1)讨论函数f(x)的单调性;(2)若不等式f(x)≥1在x∈(0,e]上恒成立,求实数a的取值范围.
已知函数f(x)=ax+lnx,其中a∈R.
(1)讨论函数f(x)的单调性;
(2)若不等式f(x)≥1在x∈(0,e]上恒成立,求实数a的取值范围.
1回答
2020-04-25 14:51
已知函数f(x)=ax+lnx,其中a∈R.(1)讨论函数f(x)的单调性;(2)若不等式f(x)≥1在x∈(0,e]上恒成立,求实数a的取值范围.
已知函数f(x)=ax+lnx,其中a∈R.
(1)讨论函数f(x)的单调性;
(2)若不等式f(x)≥1在x∈(0,e]上恒成立,求实数a的取值范围.
(1)∵定义域为(0,+∞)∴f′(x)=-ax2+1x=x-ax2,①当a≤0,f′(x)≥0,恒成立,∴f(x)在定义域(0,+∞)单调递增;②当a>0,当x>a时,f′(x)>0,f(x)单调递增;当0<x<a,f′(x...