设a、b、c均为正实数,求(a+b+c)[1/(a+b)+1-查字典问答网
分类选择

来自柳诚飞的问题

  设a、b、c均为正实数,求(a+b+c)[1/(a+b)+1/c]的最小值.

  设a、b、c均为正实数,求(a+b+c)[1/(a+b)+1/c]的最小值.

1回答
2020-04-26 09:11
我要回答
请先登录
庞占龙

  最小值是4哦.

  这个问题其实是(Y+1/Y)的变种.

  因为Y+1/Y在Y为正实数的情况下最小值是2,这个解法会吧,设Y+1/Y=n,然后用根的判别式.

  题目中的式子可以变为

  2+c/(a+b)+(a+b)/c即2+Y+1/Y

2020-04-26 09:14:35

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •