任何物质都有三态变化吗木头、人也有三态变化吗?象碳一类可燃烧的物质有三态变化吗请说明为什么有,为什么没有,希望是科学的答案,不要想当然的答.假如任何物质都有三态变化,那么加热
任何物质都有三态变化吗
木头、人也有三态变化吗?
象碳一类可燃烧的物质有三态变化吗
请说明为什么有,为什么没有,希望是科学的答案,不要想当然的答.
假如任何物质都有三态变化,那么加热任何一个物体应该都会发生物态变化,可实际是这样吗
任何物质都有三态变化吗木头、人也有三态变化吗?象碳一类可燃烧的物质有三态变化吗请说明为什么有,为什么没有,希望是科学的答案,不要想当然的答.假如任何物质都有三态变化,那么加热
任何物质都有三态变化吗
木头、人也有三态变化吗?
象碳一类可燃烧的物质有三态变化吗
请说明为什么有,为什么没有,希望是科学的答案,不要想当然的答.
假如任何物质都有三态变化,那么加热任何一个物体应该都会发生物态变化,可实际是这样吗
物质在一定的温度、压强条件下所处的相对稳定的状态称为物态.在一般条件下,主要是固态、液态和气态这三种分子或原子集团的聚集状态.当分子或原子在相互作用的影响下,只能围绕各自的平衡位置做微小的无规则振动时,表现为固态;当分子或原子运动得比较剧烈,使它没有固定的平衡位置,但还不致分散远离时,就表现为液态;如果不但分子或原子的平衡位置没有了,也不能维持一定的距离,分子或原子之间的相互作用除了相互碰撞时以外几乎可以忽略,就表现为气态.因此,固体状态能够保持一定的体积和形状,液体状态虽能保持一定的体积但没有一定的形状,具有流动性,而气体则能充满它所能达到的空间,既没有一定的体积,也没有一定的形状.
有人认为除了上述三种状态外,还应增加等离子态和超固态两种物态.当气体中的分子或原子运动更加剧烈,就充分电离成离子与电子的混合集团,这种状态称为等离子态,这是宇宙中普遍存在的一种物质的聚集状态;当压强达到百万级大气压时,原子结构被破坏,原子外围的电子壳层被挤压到原子核范围,这种状态称为超固态.
晶体是固体中的一大类,组成固体的粒子(原子、离子或分子)在空间有规则排列(呈空间周期性排列)的是晶体.有时晶体也可以从几何外形上来辨认.许多天然晶体如石英、方解石等,呈规则的多面体外形.但外形不一定是可靠的标志,往往由于生长条件的限制,规则的晶面未能充分显露.在物理性质上,晶体在不同方向上的性质(如力学性质,热学性质、电学性质、光学性质等)是不同的——各向异性.譬如云母晶体在不同方向上的导热性不同.晶体还具有确定的熔点.这些都是内在结构的周期性在宏观物理性质上的表现.
晶体又分为单晶体和多晶体.单晶体指整块物体是一个晶体.上述的晶体就是指单晶体.如果整块物体是由许多杂乱无章地排列着的小晶体(晶粒)组成,该物体就是多晶体.一般的金属材料即是,晶粒大小约有10-5~10-3厘米,每个晶粒都是小的单晶体,具有各向异性,但整块多晶体除仍有确定的熔点外,既没有天然规则的几何形状,在物理性质上也不显示各向异性,而是各向同性的.
非晶体是固体中的又一大类,组成固体的粒子在空间的分布是混乱的,在长距离上没有规则性(内部不具有周期性结构)的是非晶体.从外观上来看,它的天然状态没有规则的形状.在物理性质上,非晶体在不同方向上性质相同——各向同性.譬如非晶体玻璃在不同方向上的导热性相同.非晶体没有确定的熔点,温度升高,逐渐软化,流动性随之增加.这些都是内在结构不具有的周期性在宏观物理性质上的表现.
非晶体的内在微观结构跟液体非常类似,可以看作是粘滞性极大的液体.所以严格说来只有晶体才能叫做真正的固体.
熔化现象物质从固态变成液态的现象.晶体和非晶体由固态熔化为液态时的情况不同.在外界一定压强的条件下,晶体有一定的熔化温度——熔点.给晶体加热,当温度升高到熔点时,晶体开始熔化,在熔化吸热过程中,温度保持不变,直到全部熔化完以后,温度才继续上升.譬如,在一个大气压下,冰在它的熔点0℃,外界持续均匀供热,冰开始熔化为水,直到完全熔化成水以前一直是冰、水混合状态,温度保持0℃.非晶体没有一定的熔点.在加热过程中温度持续升高,非晶体先是由硬变软,再逐渐变成粘稠状液体,最终变成流动性好的液体.在整个熔化吸热过程中,温度不停地上升,没有固定的熔化温度.譬如石蜡、松香、沥青在吸热熔化过程都有这种变化过程.
大多数物质在熔化时体积膨胀,也有少数物质正好相反,例如冰、灰铸铁、锑、铋等,它们在熔化时体积缩小.
凝固现象物质从液态变成固态的现象.晶体和非晶体由液体凝固为固态时的情况不同.在外界一定压强的条件下,晶体有一定的凝固温度——凝固点.同一种物质的凝固点跟它的熔点相同.使液体散热,当温度降到凝固点时,液体开始凝固,在凝固放热过程中温度保持不变,直到全部凝固成晶体以后,温度才继续下降.譬如,在一个大气压下,水在它的凝固点0℃,持续向外均匀散热,水开始凝固成冰,直到完全凝固成冰以前一直是冰、水混合状态,温度保持0℃,非晶体没有一定的凝固点,它的液态在放热过程中温度不断降低,液体由稀变稠,由软变硬,最后成为固态.在整个凝固放热过程中,温度不断下降,没有固定的凝固温度.
大多数物质在凝固时体积收缩,也有少数物质正好相反,它们在凝固时体积胀大,用灰铸铁浇铸成的工件,表面纹理清晰;冬季水管和盛水容器常会在冻冰时被胀裂,都是这个道理,须分别加以利用或防止.
熔点晶体物质熔化时的温度,也就是该物质的固态和液态可以平衡共存的温度,同一种物质的凝固点跟它的熔点在同样的外界压强下相同.
晶体物质的熔点跟压强有关系.熔化时体积膨胀的物质,外界压强增大,熔化将受阻,熔点将升高;熔化时体积缩小的物质则相反,外界压强增大,会促进熔化,所以熔点降低,冰的熔点就是随增压而降低的,但变化不大.如每增加1个大气压,冰的熔点仅降低0.0075℃,因而在336个大气压下,冰的熔点将降为—2.5℃.
一般来说,纯物质中掺进另一种物质,熔点要降低.例如海水比淡水的熔点低.冰和食盐的混合物,熔点可降到零下二十多摄氏度.若为冰和氯化钙的混合物,熔点可降到零下五十多摄氏度.某些合金的熔点较其中的纯金属的熔点要低.一些低熔点合金在生产技术中被广泛应用.如焊接电路用锡铅合金、保险丝用铅锑合金等.
熔化热单位质量的某种晶体物质在熔点熔化成同温度的液体时吸收的热量.单位是焦/千克.单位质量的某种晶体的液态物质在凝固点凝固成同温度的晶体时放出的热量等于该物质在同一温度的熔化热.物质的熔点跟压强有关系,同一种物质在不同的熔化温度下,它的熔化热也不同.
熔化热常用字母λ表示.知道了熔化热,就可以算出质量为m的晶体在熔化时吸收的热量Q:
Q=λ·m.
熔化图象和凝固图象用以表示物质的熔化和凝固过程的温度—时间关系图象.如图所示,在直角坐标系中横轴表示吸热或放热的时间,纵轴表示温度.在观察某种物质的吸热熔化、放热凝固的过程中,记录下相隔相等时间的各个时刻物质的温度值,将各组温度、时间数据标入坐标图中(每一坐标点与一组数据对应),然后用平滑曲线把这些点连接起来,就得到熔化图象和凝固图象.从图象中可以形象地观察熔化、凝固的全过程,对比晶体与非晶体在物态变化过程中的不同和各自的特点,不同晶体的熔点(凝固点)以及过程所需时间的数值.图甲表示海波的熔化图象.结合实验中观察到的状态和温度变化,可知:图象中AB段表示固态海波的温度随加热时间的增长而逐渐升高;到达48℃开始熔化,BC段表示熔化过程,在这个过程中虽然继续加热,但温度保持不变——熔点为48℃,直到固态海波全部熔解为液态;CD段则表示完全成为液态的海波吸热继续升温的过程.乙图为海波的凝固图象,可知液态海波放热降至48℃开始凝固,凝固放热过程中温度保持不变,它的凝固点与其熔点相同.丙图表示石蜡的熔化图象.在它由固态先变软,然后逐渐变稀,最后成为液态的吸热全过程中,温度不断上升,没有一定的熔