来自沈标正的问题
【对勾函数y=ax+b/x当a、b均不等于0时是奇函数,渐近线方程{x=0和y=ax}问:怎样证明出其中一条渐近线是y=ax?(望详解)】
对勾函数
y=ax+b/x当a、b均不等于0时是奇函数,渐近线方程{x=0和y=ax}
问:怎样证明出其中一条渐近线是y=ax?(望详解)
1回答
2020-04-27 01:21
【对勾函数y=ax+b/x当a、b均不等于0时是奇函数,渐近线方程{x=0和y=ax}问:怎样证明出其中一条渐近线是y=ax?(望详解)】
对勾函数
y=ax+b/x当a、b均不等于0时是奇函数,渐近线方程{x=0和y=ax}
问:怎样证明出其中一条渐近线是y=ax?(望详解)
若曲线上的点沿曲线趋于无穷远时,该点与某一直线的距离趋于零,则称此直线是曲线的渐近线.
斜渐近线:若曲线y=f(x),如果limx→无穷f(x)/x=a,limx→无穷[f(x)-ax]=b,则直线y=ax+b为曲线y=f(x)的斜渐近线.
由上面定义来计算对勾函数的渐近线方程:
limx→无穷(a+b/x^2)=a
limx→无穷b/x=0
所以渐近线为y=ax