来自胡军的问题
已知双曲线的中心在原点,焦点F(2,0)到一条渐近线的距离为1,试求过焦点F且与渐近线垂直的直线L被双曲线截得得线段长
已知双曲线的中心在原点,焦点F(2,0)到一条渐近线的距离为1,试求过焦点F且与渐近线垂直的直线L被双曲线截得得线段长
1回答
2020-04-27 07:18
已知双曲线的中心在原点,焦点F(2,0)到一条渐近线的距离为1,试求过焦点F且与渐近线垂直的直线L被双曲线截得得线段长
已知双曲线的中心在原点,焦点F(2,0)到一条渐近线的距离为1,试求过焦点F且与渐近线垂直的直线L被双曲线截得得线段长
设渐近线方程为y=(b/a)x,L与双曲线交点坐标分别为A(x1,y1),B(x2,y2).点F到直线y=(b/a)x距离为d=1|2b/a|/√[1+(b/a)²]=1得b/a=√3/3,b²+a²=4,得b²=1,a²=3于是双曲线方程为x²/3-y²...