来自童华章的问题
证明1arctan(1/5)+arctan(2/3)=派/42aectan(3/4)=2arctan(1/2)
证明1arctan(1/5)+arctan(2/3)=派/42aectan(3/4)=2arctan(1/2)
5回答
2020-04-30 15:49
证明1arctan(1/5)+arctan(2/3)=派/42aectan(3/4)=2arctan(1/2)
证明1arctan(1/5)+arctan(2/3)=派/42aectan(3/4)=2arctan(1/2)
1arctan(1/5)+arctan(2/3)=派/4设arctan(1/5)=Xarctan(2/3)=Y∵tan﹙X+Y﹚=﹙tanX+tanY﹚/﹙1﹣tanXtanY﹚=﹙1/5+2/3﹚/﹙1-1/5×2/3﹚=1而tan派/4=1∴arctan(1/5)+arctan(2/3)=派/42...
是的是的我打错了应该是4/3
2aectan(4/3)=2arctan(1/2)设aectan(4/3)=Xarctan(1/2)=Y∵tanX=4/3tan2Y=﹙2tanY﹚/﹙1-tan²Y﹚=﹙2×1/2﹚/﹙1-1/4﹚=4/3∴aectan(4/3)=2arctan(1/2)
tan2y=2tany??
∵tan﹙m+n﹚=﹙tanm+tann﹚/﹙1-<tanm><tann>﹚∴当m=n=Y时tan2Y=﹙2tanY﹚/﹙1-tan²Y﹚