来自孙宏伟的问题
【椭圆4x2+9y2=144内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为______.】
椭圆4x2+9y2=144内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为______.
1回答
2020-05-02 11:16
【椭圆4x2+9y2=144内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为______.】
椭圆4x2+9y2=144内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为______.
设以P(3,2)为中点椭圆的弦与椭圆交于E(x1,y1),F(x2,y2),
∵P(3,2)为EF中点,
∴x1+x2=6,y1+y2=4,
把E(x1,y1),F(x2,y2)分别代入椭圆4x2+9y2=144,
得
4x