来自耿修堂的问题
(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F1(-1,0),且椭圆C的离心率e=12.(1)求椭圆C的方程;(2)设椭圆C的上下顶点分别为A1,A2,Q是椭
(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F1(-1,0),且椭圆C的离心率e=12.
(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=167相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
1回答
2020-05-02 20:14