来自陈丹柯的问题
【若抛物线y2=4x的焦点是F,准线是l,则经过点F、M(4,4)且与l相切的圆共有______个.】
若抛物线y2=4x的焦点是F,准线是l,则经过点F、M(4,4)且与l相切的圆共有______个.
1回答
2020-05-04 05:21
【若抛物线y2=4x的焦点是F,准线是l,则经过点F、M(4,4)且与l相切的圆共有______个.】
若抛物线y2=4x的焦点是F,准线是l,则经过点F、M(4,4)且与l相切的圆共有______个.
抛物线y2=4x的参数p=2,所以F(1,0),准线l:x=-1,即x+1=0,设经过点M(4,4)、F(1,0),且与直线l相切的圆的圆心为Q(a,b),则半径为Q到l的距离为即1+a,∴圆的方程为(x-a)2+(y-b)2=(1+a)2;将M、F的...