来自彭威的问题
设P是椭圆(x²/4)+y²=1上的一点,F1,F2是椭圆的两个焦点,则|PF1||PF2|的最大值为?最小值?两个都用均值不等式求
设P是椭圆(x²/4)+y²=1上的一点,F1,F2是椭圆的两个焦点,则|PF1||PF2|的最大值为?最小值?
两个都用均值不等式求
1回答
2020-05-04 16:46
设P是椭圆(x²/4)+y²=1上的一点,F1,F2是椭圆的两个焦点,则|PF1||PF2|的最大值为?最小值?两个都用均值不等式求
设P是椭圆(x²/4)+y²=1上的一点,F1,F2是椭圆的两个焦点,则|PF1||PF2|的最大值为?最小值?
两个都用均值不等式求
用均值不等式只能求最大值,不能求最小值椭圆(x²/4)+y²=1a²=4,a=2,c²=a²-b²=3,c=√3根据椭圆定义,P在椭圆上,则|PF1|+|PF2|=2a=4根据均值不等式得|PF1||PF2|≤[(|PF1|+|PF2|)/2]²...