用均值不等式求y=2x^2+1/x+1(x>-1)的最值-查字典问答网
分类选择

来自李怡勇的问题

  用均值不等式求y=2x^2+1/x+1(x>-1)的最值

  用均值不等式求y=2x^2+1/x+1(x>-1)的最值

1回答
2020-05-04 19:34
我要回答
请先登录
汤佳郁

  y=(2x²+1)/(x+1)

  =[2(x+1-1)²+1]/(x+1)

  =[2(x+1)²-4(x+1)+3]/(x+1)

  =2(x+1)+3/(x+1)-4

  ≥2√[2(x+1)•3/(x+1)]-4

  =2√6-4

  当且仅当2(x+1)=3/(x+1),即x=√6/4-1时,

  y有最小值为2√6-4

2020-05-04 19:38:15

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •