【光子有什么特性和作用?】-查字典问答网
分类选择

来自陈彭年的问题

  【光子有什么特性和作用?】

  光子有什么特性和作用?

1回答
2020-05-04 23:08
我要回答
请先登录
陈志敏

  从波的角度看,光子具有两种可能的偏振态和三个正交的波矢分量,决定了它的波长和传播方向;从粒子的角度看,光子静止质量为零,电荷为零,半衰期无限长.光子是自旋为1的规范玻色子,因而轻子数、重子数和奇异数都为零.光子的静止质量严格为零,本质上和库仑定律严格的距离平方反比关系等价,如果光子静质量不为零,那么库仑定律也不是严格的平方反比定律.所有有关的经典理论,如麦克斯韦方程组和电磁场的拉格朗日量都依赖于光子静质量严格为零的假设.是任意电磁波的频率,位于超低频段的舒曼共振已知最低频率约为7.8赫兹.这个值仅比现在得到的广为接受的上限值高出两个数量级.参见光子:规范玻色子一节中对光子质量的讨论.光子能够在很多自然过程中产生,例如:在分子、原子或原子核从高能级向低能级跃迁时电荷被加速的过程中会辐射光子,粒子和反粒子湮灭时也会产生光子;在上述的时间反演过程中光子能够被吸收,即分子、原子或原子核从低能级向高能级跃迁,粒子和反粒子对的产生.

  光子的能量和动量仅与光子的频率ν有关;或者说仅与波长λ有关光子的能量和动量仅与光子的频率ν有关;或者说仅与波长λ有关.从光子的能量、动量公式可导出一个推论:粒子和其反粒子的湮灭过程一定产生至少两个光子.原因是在质心系下粒子和其反粒子组成的系统总动量为零,由于动量守恒定律,产生的光子的总动量也必须为零;由于单个光子总具有不为零的大小为的动量,系统只能产生两个或两个以上的光子来满足总动量为零.产生光子的频率,即它们的能量,则由能量-动量守恒定律(四维动量守恒)决定.而从能量-动量守恒可知,粒子和反粒子湮灭的逆过程,即双光子生成电子-反电子对的过程不可能在真空中自发产生.光子具有波粒二象性,即说光子像一粒一粒的粒子的特性又有像声波一样的波动性,光子的波动性有光子的衍射而证明,光子的粒子性是由光电效应证明.上面有人认为光子的动质量为零是错误的,光子的静质量为零,否则的话其动质量将为无穷大.但其动质量却是存在的,计算方法是这样的:首先,由于频率为v的光子的能量为

  E=hv,(其中h为普朗克常数),故由质能公式可得其质量为:m=E/c^2=hv/c^2

  其中c^2表示光速的平方.该方法由爱因斯坦首先提出.

  经典的波有群速度与相速度之分.

  光子的速度就是光速.

  光子有速度、能量、动量、质量.光子不可能静止.光子可以变成其它物质(如一对正负电子),但能量守恒、动量守恒.

  华中科技大学教授重新确定光子静止质量上限,有业内人士认为:光子静止质量为零是经典电磁理论的基本假设之一.但有些科学家则认为,光子可能有静止质量.如果实验最终检测到光子存在静止质量,那么有些经典理论将要有所变化.

  技术应用

  这里讨论的是光子在当今技术中的应用,而不是泛指可在传统光学下应用的光学仪器(如透镜).激光是二十世纪光学最重要的技术之一,其原理是上文讨论的受激辐射.

  对单个光子的探测可用多种方法,传统的光电倍增管利用光电效应:当有光子到达金属板激发出电子时,所形成的光电流将被放大引起雪崩放电.电荷耦合元件(CCD)应用半导体中类似的效应,入射的光子在一个微型电容器上激发出电子从而可被探测到.其他探测器,如盖革计数器利用光子能够电离气体分子的性质,从而在导体中形成可检测的电流.

  普朗克的能量公式E=hnu经常在工程和化学中被用来计算存在光子吸收时的能量变化,以及能级跃迁时发射光的频率.例如在荧光灯的发射光谱的设计中会用不同能级的电子去碰撞气体分子,直到有合适的能级能够激发出荧光.

  在某些情形下,单独一个光子无能力激发一个能级的跃迁,而需要有两个光子同时激发.这就提供了更高分辨率的显微技术,因为样品只有在两束不同颜色的光所照射的高度重叠的部分之内才会吸收能量,而这部分的体积要比单独一束光照射到并引起激发的部分小很多,这种技术被应用于双光子激发显微镜中.而且,应用弱光照射能够减小光照对样品的影响.

  有时候两个系统的能级跃迁会发生耦合,即一个系统吸收光子,而另一个系统从中“窃取”了这部分能量并释放出不同频率的光子.这是荧光共振能量传递的基础,被应用于测量分子间距中.

  量子光学是物理光学中相对于波动光学的另一个分支.光子可能是超快的量子计算机的基本运算元素,而在这方面重点研究的对象是量子纠缠态.非线性光学是当前光学另一个活跃的领域,它研究的课题包括光纤中的非线性散射效应、四波混频、双光子吸收、自相位调制、光学参量振荡等.不过这些课题中并不都要求假设光子的存在,在建模过程中原子经常被处理为一个非线性振子.非线性效应中的自发参量下转换经常被用来产生单光子态.最后,光子是光通信领域某些方面的关键因素,特别是在量子密码学中.

2020-05-04 23:12:36

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •