【二次函数的应用题几种最基本的解法,】-查字典问答网
分类选择

来自马君刚的问题

  【二次函数的应用题几种最基本的解法,】

  二次函数的应用题几种最基本的解法,

1回答
2020-05-06 16:30
我要回答
请先登录
陈兰森

  二次函数应用题从题设给定形式和解法上看,常见的有以下三类:

  一、分析数量关系型

  题设结合实际情景给出了一定数与量的关系,要求在分析的基础上直接写出函数关系式,并进行应用.

  此类二次函数应用题解答的关键是认真分析题意,正确写出数量关系式.

  例1.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元.

  (1)求y关于x的二次函数关系式,并注明x的取值范围;

  (2)将(1)中所求出的二次函数配方成的形式,写出顶点坐标;在图2所示的坐标系中画出草图;观察图象,指出单价定为多少元时日均获得最多,是多少?

  (3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,哪一种获总利较多,多多少?

  (1)若销售单价为x元,则每千克降低(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利为(x-30)元.根据题意得(30≤x≤70).

  (2).顶点坐标为(65,1950),草图略,当单价定为65元时,日均获利最多,是1950元.

  (3)列式计算得,当日均获利最多时,可获总利195000元;当销售单价最高时,可获总利221500元.故当销售单价最高时获总利较多,且多获利221500-195000=26500元.

  二、待定系数法型

  题设明确给出两个变量间是二次函数关系,和几对变量值,要求求出函数关系式,并进行简单的应用.

  此类二次函数应用题解答的关键是熟练运用待定系数法,准确求出函数关系式.

  例1.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:

  x(十万元)

  1

  2

  …

  y

  1

  1.5

  1.8

  …

  (1)求y与x的函数关系式;

  (2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;

  (3)如果投入的年广告费为10—30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?

  (1)因为题中给出了y是x的二次函数关系,所以用待定系数法即可求出y与x的函数关系式为

  (2)由题意得S=10y(3-2)-x

  (3)由(2)及二次函数性质知,当1≤x≤2.5,即广告费在10—25万元之间时,S随广告费的增大而增大.

  三、构建数学模型型

  要求自主构造二次函数,利用二次函数的图象、性质等解决实际问题.

  这类二次函数应用题问题建模要求高,有一定难度.例3..某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量,y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.

  (1)求y关于x的函数关系式;

  (2)度写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?

  (3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围

  在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?

  .(1)由题意,设y=kx+b,图象过点(70,5),(90,3),

  ∴解得∴y=x+12.

  (2)由题意,得w=y(x-40)-z=y(x-40)-(10y+42.5)=(x+12)(x-10)-10(x+12)-42.5

  =-0.1x2+17x-642.5=(x-85)2+80.

  当85元时,年获利的最大值为80万元.

  (3)令w=57.5,得-0.1x2+17x-642.5=57.2.

  整理,得x2-170x+7000=0.

  解得x1=70,x2=100.

  由图象可知,要使年获利不低于57.5万元,销售单价应在70元到100元之间.又因为销售单价越低,销售量越大,所以要使销售量最大,又使年获利不低于57.5万元,销售单价应定为70元.

2020-05-06 16:33:05

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •