来自黄桂敏的问题
【4月3日平均值不等式及其应用5变式4设x,y,z∈R,且x2+y2+z2=1,求S=xy/z+xz/y+yz/x的最小值.】
4月3日平均值不等式及其应用5变式4设x,y,z∈R,且x2+y2+z2=1,求S=xy/z+xz/y+yz/x的最小值.
1回答
2020-05-06 09:48
【4月3日平均值不等式及其应用5变式4设x,y,z∈R,且x2+y2+z2=1,求S=xy/z+xz/y+yz/x的最小值.】
4月3日平均值不等式及其应用5变式4设x,y,z∈R,且x2+y2+z2=1,求S=xy/z+xz/y+yz/x的最小值.
由题设及均值不等式可知,(xy/z)²+(xz/y)²≥2x²,(xy/z)²+(yz/x)²≥2y²,(xz/y)²+(yz/x)²≥2z².三式相加得:(xy/z)²+(xz/y)²+(yz/x)²≥1.该式两边加2×(...