来自陈德军的问题
【第一题,求微分方程y"+y=3x^2的通解,第二题:求微分方程y'-(y-x)^2=1的通解就是大学所学的高数了,可是我自己忘了,】
第一题,求微分方程y"+y=3x^2的通解,第二题:求微分方程y'-(y-x)^2=1的通解
就是大学所学的高数了,可是我自己忘了,
1回答
2020-05-08 08:22
【第一题,求微分方程y"+y=3x^2的通解,第二题:求微分方程y'-(y-x)^2=1的通解就是大学所学的高数了,可是我自己忘了,】
第一题,求微分方程y"+y=3x^2的通解,第二题:求微分方程y'-(y-x)^2=1的通解
就是大学所学的高数了,可是我自己忘了,
1.∵原方程的特征方程是r²+1=0,则特征根是r=±i
∴原方程的齐次方程的通解是y=C1cosx+C2sinx(C1,C2是积分常数)
设原方程的特解是y=Ax²+Bx+C
∵y'=2Ax+B,y''=2A
代入原方程得2A+Ax²+Bx+C=3x²
==>A=3,B=0,2A+C=0(比较同次幂的系数)
==>A=3,B=0,C=-6
∴原方程的特解是y=3x²-6
故原方程的通解是y=C1cosx+C2sinx+3x²-6(C1,C2是积分常数)
2.设u=y-x,则y'=u'+1
代入原方程得u'+1-u²=1
==>u'-u²=0
==>du/u²=dx
==>1/u=-x+C(C是积分常数)
==>u=1/(C-x)
==>y-x=1/(C-x)
故原方程的通解是y=x+1/(C-x)(C是积分常数)