(1)、证明:令x=y=0,代入f(x+y)=f(x)+f(y)式,
得f(0+0)=f(0)+f(0),即f(0)=0.
令y=-x,代入f(x+y)=f(x)+f(y),
得f(x-x)=f(x)+f(-x),又f(0)=0,则有
0=f(x)+f(-x).
即f(-x)=-f(x)对任意x∈R成立,
所以f(x)是奇函数.
(2)、任取-1<x1<x2<1,则x1-x2<0,
由题设x<0时,f(x)>0,可得f(x1-x2)>0
f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)>0
故有f(x1)>f(x2)
所以f(x)在(-1,1)上是单调递减函数.
(3)、任取x1<x2,则x1-x2<0,
由题设x<0时,f(x)>0,可得f(x1-x2)>0
f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)>0
故有f(x1)>f(x2)
所以f(x)在R上是单调递减函数.
由题意可知:f(x)奇函数,f(1-2a)+f(4-a2)>0
所以f(1-2a)>f(a2-4)
又因为f(x)在R上是单调递减函数.
所以1-2a<a2-4,
解得:(−∞,−1−
6)∪(−1+
6,+∞)