来自贺欢的问题
设f(x)=alnx+12x+32x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值.
设f(x)=alnx+12x+32x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(Ⅰ)求a的值;
(Ⅱ)求函数f(x)的极值.
1回答
2020-05-08 19:36
设f(x)=alnx+12x+32x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值.
设f(x)=alnx+12x+32x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(Ⅰ)求a的值;
(Ⅱ)求函数f(x)的极值.
(Ⅰ) 求导函数可得f′(x)=ax−12x