【凸n边形P中的每条边和每条对角线都被染为n种颜色中的一种颜-查字典问答网
分类选择

来自韩宏宪的问题

  【凸n边形P中的每条边和每条对角线都被染为n种颜色中的一种颜色.问:对怎样的n,存在一种染色方式,使得对于这n种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P的顶】

  凸n边形P中的每条边和每条对角线都被染为n种颜色中的一种颜色.问:对怎样的n,存在一种染色方式,使得对于这n种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P的顶点,且它的3条边分别被染为这3种颜色?

1回答
2020-05-08 18:02
我要回答
请先登录
孙金标

  当n≥3为奇数时,存在合乎要求的染法;当n≥4为偶数时,不存在所述的染法.

  每3个顶点形成一个三角形,三角形的个数为Cn3个,而颜色的三三搭配也刚好有Cn3种,所以本题相当于要求不同的三角形对应于不同的颜色组合,即形成一一对应.

  我们将多边形的边与对角线都称为线段.对于每一种颜色,其余的颜色形成Cn-12种搭配,所以每种颜色的线段(边或对角线)都应出现在Cn-12个三角形中,这表明在合乎要求的染法中,各种颜色的线段条数相等.所以每种颜色的线段都应当有C2

  n

  n=n−12

2020-05-08 18:07:11

最新问答

推荐文章

猜你喜欢

附近的人在看

推荐阅读

拓展阅读

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •