a、b、c为正实数,求[(a+b)^2+(a+b+4c)^2](a+b+c)/abc的最小值.[求高手具体解释啊``]解:由均值不等式,得(a+b)^2+(a+b+4c)^2=(a+b)^2+[(a+2c)+(b+2c)]^2>=(2根ab)^2+[2(根(2ab))+2(根(2bc))]^2=4ab+8ac+8bc+16c根(ab)于是,[(a+b)^2+(a+
a、b、c为正实数,求[(a+b)^2+(a+b+4c)^2](a+b+c)/abc的最小值.[求高手具体解释啊``]
解:由均值不等式,得
(a+b)^2+(a+b+4c)^2
=(a+b)^2+[(a+2c)+(b+2c)]^2
>=(2根ab)^2+[2(根(2ab))+2(根(2bc))]^2
=4ab+8ac+8bc+16c根(ab)
于是,[(a+b)^2+(a+b+4c)^2](a+b+c)/abc
>=[4ab+8ac+8bc+16c(ab)](a+b+c)/abc
=(4/c+8/b+8/a+16/根ab)(a+b+c)
=8(1/2c+1/b+1/a+1/根ab+1/根ab)(a/2+a/2+b/2+b/2+c)
>=8[5(1/2a^2b^2c)^(1/5)]×[5(a^2b^2c/2^4)^(1/5)]=100
当且仅当a=b=2c>0时,上式取等号,
故原式最小值为100.
这是我找到的那个答案,
但是,
=(4/c+8/b+8/a+16/根ab)(a+b+c)①
=8(1/2c+1/b+1/a+1/根ab+1/根ab)(a/2+a/2+b/2+b/2+c)②
>=8[5(1/2a^2b^2c)^(1/5)]×[5(a^2b^2c/2^4)^(1/5)]=100③
①到②为什么整理成这种形式,②到③是怎么得的,有没有用什么公式,怎么出来一个五次根下?puzzle